MEMS Engineer Forum 2015 April 21, 2015

Ultraflexible Organic Devices for Biomedical Applications

Takao Someya

The University of Tokyo, Tokyo, Japan.

Outline

- Introduction
 - Ultrathin OTFT, OPV & OLED
- Emerging applications
- Summary

Flexible Organic Electronics OLED display **OLED** lighting

Organic RFID tag

Organic Photovoltaic

Robotic E-skin

T. Someya, et al., IEDM #8.4, 203 (2003).
T. Someya, et al., PNAS 101, 9966 (2004).
T. Someya, et al., PNAS 102, 12321 (2005).
T. Sekitani, et al., Nature Mat. 6, 413 (2007).
T. Sekitani, et al., PNAS 105, 4976 (2008).
T. Sekitani, et al., Science 321, 1468 (2008).

In 2003

E-skin System

Significant reduction of the number of w

 $1,024 = 2^{10}$ (decoder & selector)

1.000,000 wirings →

 $1,000,000 = 1,000 \times 1,000$ (active matrix)

Column selectors

Pressure sensitive rubbery sheet

16 x 16 FET matrix

Row decoders

Top electrode

T. Someya, et al., PNAS 101, 9966 (2004).

Power consumption of active matrix driving

Active matrix configuration shows power consumption much lower than passive matrix

Active

matrix

(w/TFT)

0.1mW

1.3mW

A Start Contraction

Skin-like sensitivity

Robots with sensitive skins will feel and even respond to a person's warmth while shaking hands, consequently letting people feel that robots are warmer. TORTURE CASE = BEST & WORST GOVERNORS = CLOONEY'S NEW FLICK

the narrow carbon the set of the

SHIII

Ultraflexible organic devices

World's thinnest and lightest OTFT (3g/m²)

Martin Kaltenbrunner, et al., Nature 499, 458–463 (25 July 2013).

Amazing robustness: Crumpling Minimum bending radius ~ 5µm

Stretchable organic transistors

Crumpled organic integrated circuits

Bending radius

Cross-sectional TEM

World's thinnest and lightest OPV

Stretchable OLED

Brightness: 100 cd/m² Stretching >100%!

Light-emitting device that fits 3D surfaces Light source health-monitoring sensors

Nature Photonics 7, 811–816 (2013) doi:10.1038/nphoton.2013.188

Flexible Electronics for Biomedical Applications

In-vitro neural interface

sensors output characteristics gate bias igh k-dielectr kible substrat G. Malliaras, et al, Nature

Chemical

Neural interfaces Multifunctional wearable devices

L. Torsi and A. Dodabalapur, Analytical Chemistry 70, 381A (2005).

Dae-Hyeong Kim, Nature Nanotech 9, 397 (2014).

Neural interfaces

Comm., 4:1575 (2013) S. Lacour, S. Wagner, Barclay MorrisonIII et al J.Neurotrauma, 2009, vol. 26, 1135.

Neural Stem Cells

M. Berggren, et al., PLoS ONE, 6, e18624 (2011).

High-sensitive electronic skin

Holst Centre Z. Bao Nature Materials (2010). Z. Bao, Nature Nanotech (2011). http://www.holstcentre.com/

Artificial skin

K. Takei, J. Ali Nature Materials (2010).

Wearable electronics

J. Viventi, J. A. Rogers et al, Nature Neuro., 14, 1599 (2011)

Medical sensors & lighting Intelligent balloon catheter **Epidermal electronic skin**

J. A. Rogers, Nature Materials 10, 316 (2011).

J. A. Rogers, Nature Materials 9, 316 (2010).

- J. A. Rogers, Science 333, 6044 (2011).
- J. A. Rogers, Nature Mater. 12, 6938 (2013).

IMEC: ECG patch sensor

Proceedings of the 2nd Conference on Wireless Health, **15** (2011).

http://www.youtube.com/watch?v=iv7Wlly_W0Q

John A Rogers's Flex Devices

500µm

36µm

5µm ← Thickness

ΙΙΙΙΝΟΙS

Dae-Hyeong Kim, John A. Rogers, et al., Science 333, 838 (2011).

From Roboti CS to Human Robotics F-skins (2003) (2013)

Thickness: 1/1000

t=1~2 mm

T. Someya et al., IEDM #8.4, 203 (2003).T. Someya et al., PNAS 101, 9966 (2004).T. Someya et al., PNAS 102, 12321 (2005).

M. Kaltenbrunner, et al., Nature 499, 458 (2013).

t=2µm

458 (2013). 18

Surface electromyogram monitoring

Electromyogram measurement

For stress-free healthcare-monitoring and welfare IT

Fuketa, et. al., IEEE/ISSCC2013 #6.4.

Implantable organic amplifier

Flexible: R<10 µm

Weight: 3g/m²

τοtal thickness: 2.5 μm (W encapsulation)

Large-area coverage: 50 x 50 mm²

Imperceptible electronics

<u>Applications</u> Medical IT Welfare IT Digital Healthcare

<u>Specifications</u> The lightest (3 g/m²) The thinnest (2µm) <u>What</u> Electromyogram Electrocardiogram Body temperature Heart rate Blood pressure

<u>Where</u> Everyday life During exercise At hospital

22

Acknowledgements

Funding **JST/ERATO** JST/CREST **NEDO JAPERA**

T. Sakurai (T Tokyo)

M. Takamiya (U Tokyo)

Circuit design

T. Isoyama (U Tokyo)

Artificial heart

T. Fukushima T. Aida (U Tokyo)

(TIT)

Elastic conductors

M. Hirata, MD Osaka U, Hospital Brain surgery BMI

H. Klauk (MPI)

SAM

H. Onodera, MD University of Tokyo, Footprint

NEXSAFS

Lynn Loo

(Princeton)

S. Bauer

(JKU)

M Sekino (U Tokyo)

23

Summary

The frontier of organic electronicsToday:OLED Display & LightingOPVTomorrow:Healthcare / Medical

<u>Uniqueness of organic devices</u> <u>Ultralight, Ultrathin</u> ⇒ Minimum invasiveness <u>Flexible, Durable</u> ⇒ High reliability & High sensitivity

Emerging applications Digital Healthcare Medical IT Welfare IT