

Trillion Sensors & MEMS

Susumu Kaminaga Executive Senior Adviser Chairman. Steering Committee SPP Technologies Co., Ltd. (Former President, Sumitomo Precision Products Co., Ltd.) Representative Director & Chief Executive

21 April, 2015

SK Global Advisers Co., Ltd.

tion in the presentation is the property of SPP Technologies Co., Ltd.(SPT) and may not be duplicated, disclosed to

thout the written consent of SPT

Agenda

● Trillion Sensors (TSensors[™])

any third party, or used for any pu

- Trillion Sensors Summits (TSensors Summit[™])
- MEMS Development with SPP/SPT Involvement
- Summary

Trillion Sensors (TSensors™)

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 3

Genesis of TSensors Summit

October 2010, MEMS Technology Summit Conference at Stanford University

Muenzel Horst (then President, Bosch Akustica) presentation

- a vision for 7 trillion "sensory swarms" by 2017.
- Janusz Bryzek (then VP Development, Fairchild Semiconductor), one of the Summit organizers
- triggered to continue exploring high growth sensor opportunities.
- discovered multiple pointers to the trillion sensors in coming decade.
- believed that accelerated growth of sensor market to trillions will not be possible without a focused commercialization effort.

BSAC/UC Berkeley presentation

Vijay Ullal (then President, Fairchild Semiconductor)

- calling for creation of "Cooptition", or cooperating competitors,
- jointly funding development of standard MEMS processes necessary to support accelerated growth of MEMS market from \$10B to already visible \$300B.

Steve Walsh (UNM and MANCEF)

 suggested development of a Trillion Sensor Roadmap reusing MANCEF's past Roadmaps experience, to provide early visibility of emerging sensor applications.

Evolving concepts of the Roadmap

 presented at several 2012 meetings(IMAPS, iNEMI, SensorsCon, MEPTEC, MEMS Business Forum, COMS, MEMS in Motion, MIG Congress)

Brainstorming the ideas with

Steve Walsh, Robert Haak (Insight InterAsia, MANCEF), Robert Giasolli (Intactvascular, MANCEF), Bette Cooper (MEPTEC), Mike Pinelis (MEMS Journal), Karen Lightman (MIG), Michael McLaughlin (Yole), Job Elders (Xsens), Al Pisano (UC Berkeley), Roger Howe (Stanford University) and others

The concept of TSensors Summit Conference

chaired by Janusz Bryzek was born.

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 5

Genesis of TSensors Summit

Late 2012

- Bryzek read book Abundance1, which gave him an additional motivation to drive TSensors Summit.

March 8, 2013, UC Berkeley

- Al Pisano, learning from Bryzek about TSensors initiative, decided to help, developing a conference

"The Trillion Sensor Universe: Manufacturing Challenges"

TSensors Summit

- discovery of a trillion sensor applications and sensor types

TSensor Systems chaired by Steve Walsh

- development of the Roadmap for 2023 infrastructure

Abundance book outlined a vision for the utopian world

with no hunger, with medical care to all, with no pollution and energy to all coming in about 20 years.

Abundance being made possible mainly by eight exponential technologies

Sensors are one of them

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 7

Sensors for the Next Decade in Support of Abundance

Estimated need for sensors

- 45 <u>trillion</u> in late 2020s (up from 10 billion in 2014 and 1 billion in 2007)

Average historical development cycle for new sensors

- 30 years,

longer than the expected arrival of Abundance

TSensors Initiative aims to significantly reduce this cycle

『Abundance』: http://www.abundancethebook.com/ 『楽観主義者の未来予測』: 熊谷玲美訳 早川書房

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 9

SPT Sensors for the Next Decade in Support of Abundance

Early visibility of

emerging ultrahigh volume applications supporting Abundance

outlined by visionaries at TSensors Summits

expected to be a significant contributor to reduction of the new sensors development cycle time.

• TSensors Summits

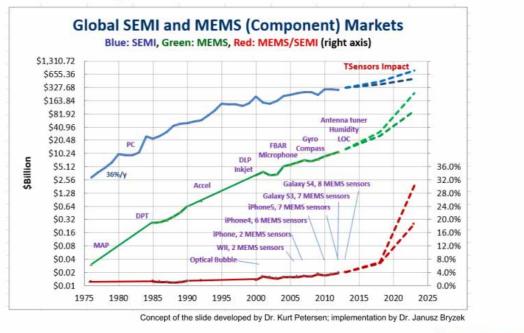
- visionaries invited to talk about emerging ultrahigh volume sensor based applications over the next decade
- Objective: provide advanced visibility to sensors developers, to enable early development focus which should significantly reduce the historical average 30 year new sensor development cycle.

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 11

TSensors Initiative

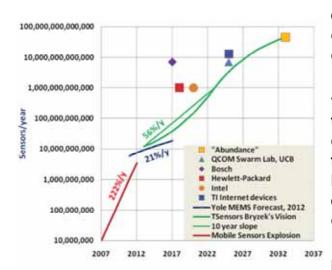
• TSensors Roadmaps


 summarizing the findings and enabling easy access for sensor developers at academic, government and industrial entities, to help them sort through emerging opportunities supporting Abundance

• TSensors Supply Chain

- Start proactive commercialization acceleration of selected sensors providing the biggest benefit for Abundance

MEMS Migration into Mainstream


The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 13

TSensors Summit

Trillion Sensor Visions

Mobile sensor market for volumes not envisioned by leading market research organizations in 2007, grew exponentially over 200%/y between 2007 and 2012.

Several organizations presented their visions for a continued growth to trillion(s). Market research companies don't yet see this growth (see Yole's forecast). So the explosion to trillion(s) is likely to be driven by applications not yet envisioned by leading market research organization.

As sensor development has been historically much longer than pure semiconductor technologies, TSensors Roadmap development is being launched to improve visibility of needed sensors to enable their accelerated development.

(Courtesy of Dr. Janusz Bryzek, "Need for a Trillion Sensors Roadmap")

Global GDP is likely to reach \$130 trillion by 2030. This forces smart sensor prices to challenging \$0.10 level. (Historical Data (blue) from Wikipedia. Extrapolation (red) by J. Bryzek.)

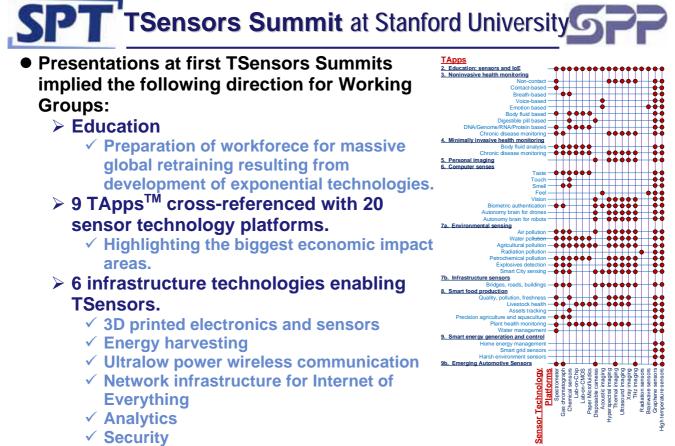
(Courtesy of Dr. Janusz Bryzek, "Need for a Trillion Sensors Roadmap")

Trillion Sensors Summits (TSensors Summit[™])

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 17

September 2014: "Trillion Sensors Summit Munich" SENSORS SUMM FOR TRILLION SENSOR ROADMAP Fraunhofer EMFT September 15-17, 2014 Munici, Germany November 2014: "Trillion Sensors Summit San Diego" SENSORS SUMMI FOR TRILLION SENSOR ROADMAP Estancia La Jolla Hotel & Spa, La Jolla, CA November 12-13, 2014 December 2014: "Trillion Sensors Summit Tokyo" T SENSORS SUMMI FOR TRILLION SENSOR ROADMAP Tokyo, Japan December 8 & 9, 2014 Le State The information in this document is the property of SPP Technologies C). Ltd (to any third party, or used for any purpose other than that for which it is supplied PR-1208 19



TSensors Summits

Location	Date	My Co-Chairs	Logistics by	Number of	Attendees
				Speakers	
Stanford University	Oct 2010	Roger Howe, Kurt Petersen,	Mepcom/Bette Cooper	28	250
		Joe Mallon, Roger Grace			
UC Berkeley	Mar 2013	Al Pisano, UC San Diego	UCBerkeley	8	140
Stanford University	Oct 2013	Roger Howe, Stanford	Mepcom/Bette Cooper	47	250
		University			
Tokyo	Feb 2014	Susumu Kaminaga, SPP	Nikkei BP/Tsuneyuki Miyake	17	200
		Technologies			
Munich	Sep 2014	Christoph Kutter,	FraunhofferInstitute	36	150
		Fraunhoffer Institute			
San Diego	Oct 2014	Al Pisano, UC San Diego	Mepcom/Bette Cooper	36	200
Tokyo	Dec 2014	Susumu Kaminaga, SPP	Nikkei BP/Tsuneyuki Miyake	41	200
		Technologies			
Total				213	1390

(Courtesy of Dr. Janusz Bryzek, "Analysis of the First Six TSensors Summits and Findings")

(Courtesy of Dr. Janusz Bryzek)

Note: numbering relates to Chapters of TSensors Roadmap

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or discloss to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT

TSensors Summits

PR-1208 21

TS ensors Theme		UC Berkeley			Munich	San Diego	Tokyo	Total
Té an cara Baadman	2000		2013	Feb/14	<u> </u>		Dec/14	<u> </u>
TS ensors Roadmap								
Introduction to TSensors, IoT, eHealth					2			2
Healthcare Abundance: Sensors, Imagers and FDA	2	2	10	4	4	11	9	42
Feeding the New World						2	2	4
Energy Generation and Harvesting			6			1		7
Sensor Technologies, including 3D printing	1	4	20	7	15	11	6	65
Environmental Sensing: Home, City and World			2	2			2	6
Automotive Energy Consumption and Pollution	1		1		6	4	2	14
TSensors Systems (Infrastructure) Roadmap								
Emerging Network Infrastructure			1	3	2	3	7	16
Emerging 3D printed ICs								
Education: Sensors, IoT and eHealth			1			1	1	3
Sensor Analytics and Big Data			1		1		7	9
Ultralow power wirelss communication			3	1		1	1	6
Security-Privacy					6	1		7
Total	4	6	45	17	36	35	37	181
Total speakers	28	8	47	17	36	36	41	213
% Speakers focused on TS ensors	14.3%	75.0%	95.7%	100.0%	100.0%	97.2%	90.2%	85.0%

(Courtesy of Dr. Janusz Bryzek, "Analysis of the First Six TSensors Summits and Findings")

Dr. Bryzek recruited 2013 TSensors presentations and had about 1400 attendees.

In addition to dedicated events, Dr. Bryzek delivered about 40 TSensors presentations across the world, all receiving enthusiastic receptions.

Susumu Kaminaga delivered about 20 presentations, primarily in Japan, receiving a similar response.

The combined audience was over 10,000 attendees.

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 23

SPT'Presentations in Japan in 2014-2015

• MEMS Engineer Forum 2014 Micromachine Center (マイクロマシンセンター) ● Japan Techno-Economics Society (科学技術と経済の会) • Japan Society of Next Generation Sensor Technology (次世代センサ協議会) (日本学術会議) • Science Council of Japan • MEMS Seminar (MEMS集中講義) ● Japan Science and Technology Agency (科学技術振興機構) ● The Japan Society of Mechanical Engineers (日本機械学会) • Japan Electronics and Information Technologies Industries Association (電子情報技術産業協会) • The Institute of Electrical Engineers of Japan (電気学会) • Technology Research Association for Inertial Sensors and their Application (慣性センサ応用技術研究協会) The Institute of Systems, Control and Information Engineers (システム制御情報学会) ● The Japan Institute of Electronics Packaging (エレクトロニクス実装学会)

TSensors initiative was split into two activities:

- TSensors focused on emerging ultrahigh volume sensors and
- TSensor Systems focused on require infrastructure for deployment of trillion sensors.

The most interesting finding from TSensors Summits:

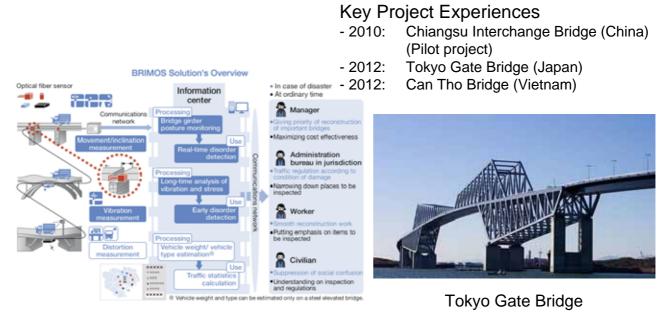
- Abundance enabled by 8 exponential technologies was the trigger for TSensors Initiative, which lead to
- Finding that TSensors is also an enabler for IoT and eHealth, the biggest economic tides in history of humans, which
- Are expected to create the incredible \$18 trillion opportunity for businesses by 2020, which
- Will dramatically restructure global workforce, eliminating perhaps more than 60% of existing jobs in one decade, and
- Creating more than that of high tech jobs, which
- Will require a massive global retraining to avoid massive unrests.

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclose to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 25

TSensors Summit Florida

Date:	December 7-9, 2015	
Location:	Orlando, Florida	
URL:	http://www.tsensorssummit.org/	(To come)

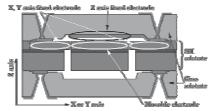

Future Potential

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

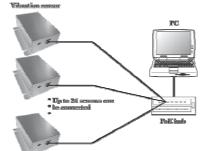
PR-1208 39

SPT Current Status - Infrastructure

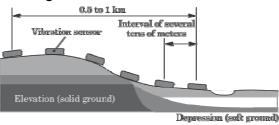
Monitoring System at Tokyo Gate Bridge, 2012


NTT DATA

(http://www.nttdata.com/global/en/services/bds/case/casestudy-01.html)



Monitoring by using Vibration Sensor for Infrastructure


Cross-sectional schematic drawing of sensor device

Connection example of vibration sensor

Building with installed vibration sensors

 \odot Seismie motion affecteri by subsurface structure α Quake-resistant standards differ according to location

nsor Illustration of ground measurement Fuji Electric

(Source: S.Sakaue, al et., FUJI ELECTRIC REVIEW, Vol.58, No. 1, pp.32, 2012)

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclose to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 41

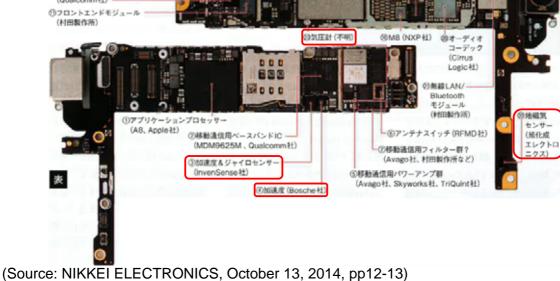
Current Status - Smart City

MEMS Absolute Pressure Sensor for Healthcare and Wearable Devices

MEMS absolute pressure sensor

Features

- Able to detect the relative difference of approximately 6 Pa in air pressure that exists between 50cm variations in altitude
- High resolution of 0.06 Pa (5 mm equivalent)
- Subminiature dimensions (3.8x3.8x0.92 mm)
- Integration of CMOS circuitry and MEMS sensors, chip size is only 1.9x1.9x0.5 mm
- Wide detection range of 300 to 1100 hPa
- Low current consumption of 0.5 to 9.0 μ A


OMRON

(http://www.omron.com/media/press/2013/06/e0628.html)

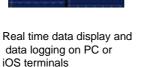
The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 43

Current Status - Healthcare

Products from AffordSENS corporation (http://www.affordsens.com)

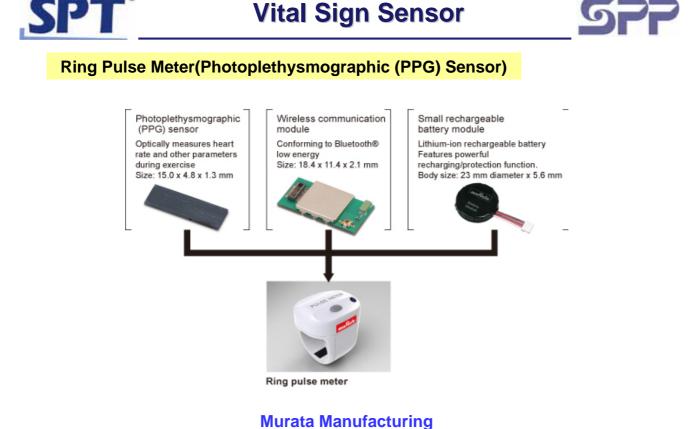
- 1. Background
 - Founded at Nov/2013 (from Maenaka project)
- 2. Products
 - Vitalgram[™] wearable human monitoring sensor
 - Application development support



2.4GHz Vitalgram BLE

(Courtesy of AffordSENS)

Nordic RF protocol or Bluetooth BLE protocol


(SQLite data format)

Data processing on a server

AffordSENS

PR-1208 45

(http://www.murata.co.jp/products/article/ta10d3/#003)

Radiation Monitoring "Pocket Geiger"

•Development Period: 3 Months. •Unit Price: 18 USD (Type1)

- •50,000+ Users, 2,000+ Active Facebook Users
- •1 Million+ Data Sharing Points

Yaguchi Electric

(Courtesy of Yaguchi Electric - Ishigaki)

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

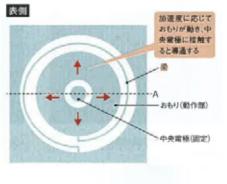
PR-1208 47

Taste Sensors

	Taste sensors and the related taste information					
Taste Sensors	Taste information		Sensor	Characteristic	Targets	
		Sourness	CA0	sourness produced by citric acid and tartaric acid	beer, coffee	
	Initial taste (Relative value)	Saltiness	CT0	saltiness evoked by dietary salts	soy sauce, soup, stock sauce	
		Umami	AAE	umami (savoriness) by amino acids and nucleic acids	soup, stock sauce, meat	
		Acidic bitterness	C00	bitterness derived by bitter substances found in foodstuffs and beverages, but can also be perceived richness with its concentration being low	bean curd, stock sauce, soup	
		Astringency	AE1	pungent taste by astringent taste materials	wine, tea	
The local sector		Sweetness	GL1	sweetness produced by sugars and sugar alcohols	sweets, drink	
Call and		Aftertaste from acidic bitterness	C00	aftertaste by bitter taste materials	beer, coffee	
Insect		Aftertaste from astringency	AE1	aftertaste by astringent taste materials	wine, tea	
	After taste (CPA	Richness	AAE	richness, also called "continuity," evoked by umami substances	soup, stock sauce, meat	
	value)	Aftertaste from basic bitterness	AC0 AN0	bitterness of medicines	basic drugs (such as quinine hydrochloride, famotidine)	
Taste Sensing System 「TS-5000Z」		Aftertaste from hydrochloride salts	BT0	bitterness of medicines	hydrochloride drugs	

Intelligent Sensor Technology (Collaboration with Kyushu University - Prof. Toko) (http://www.insent.co.jp/en/products/products_index.html)

Acceleration Switch



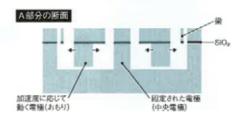
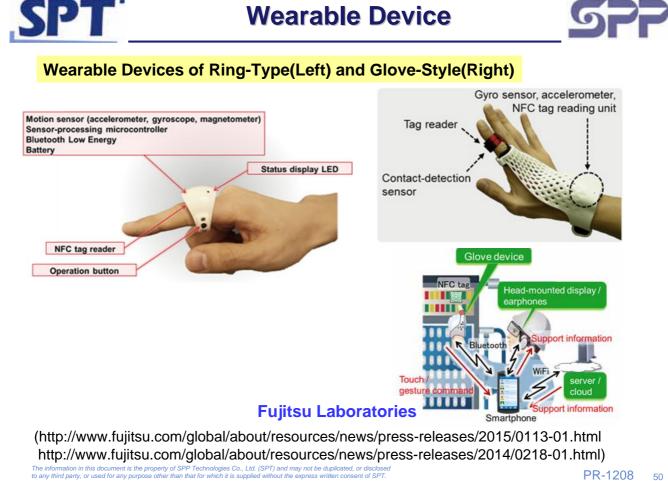

Acceleration Switch

図6 新型スイッチで待機電力 をゼロに

セイコーインスツルは、待機時の消 費電力がゼロの「加速度スイッチ」 を開発し、2013年10月に開催し た[CEATEC JAPAN 2013]で披 露した(a)。加速度がかかると、中 央の電極に周囲のおもりが接触し、 導通する仕組みである(b)。(図:(b) はセイコーインスツルの特許(特許 公開2012-251819)を基に本誌が 作成)

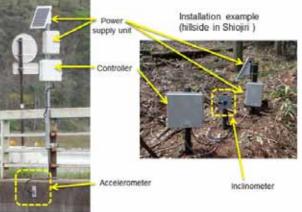


Seiko Instruments

(Source: NIKKEI ELECTRONICS, November 25, 2013, p43)

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or dist to any third party, or used for any purpose other than that for which it is supplied without the express written consent of a

PR-1208 49


Monitoring the state of bridges and hillsides

 Epson Sensing System Selected for ICT-based Urban Monitoring Project:
Looking to use a sensor network in an effort to improve urban safety, Shiojiri in April installed and began testing Epson accelerometers and inclinometers on five bridges and five hillsides.

Sieko Epson

Accelerometer and inclinometer

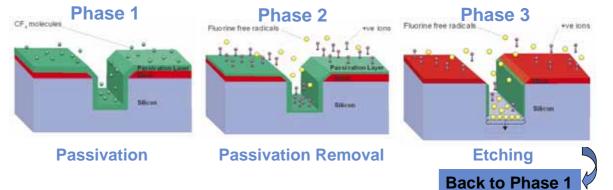
Installation example (bridge in Shiojiri)

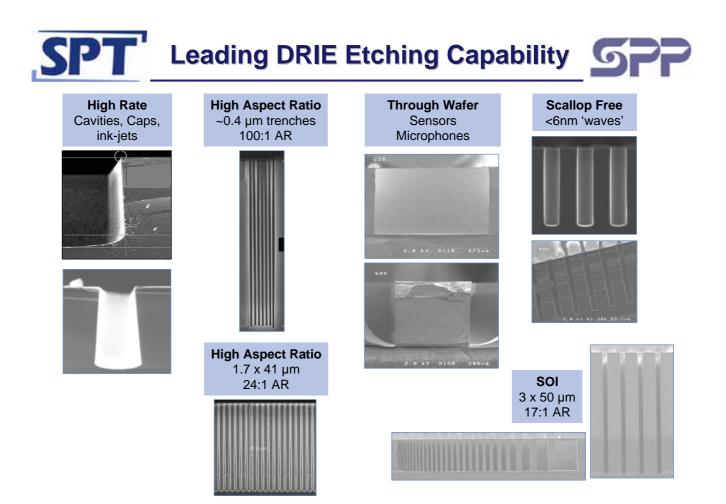
(http://global.epson.com/newsroom/2014/news_20140820.html)

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 51

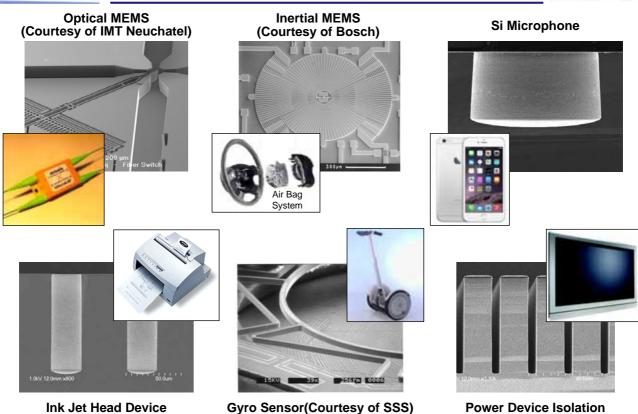
MEMS Development with SPP/SPT Involvement

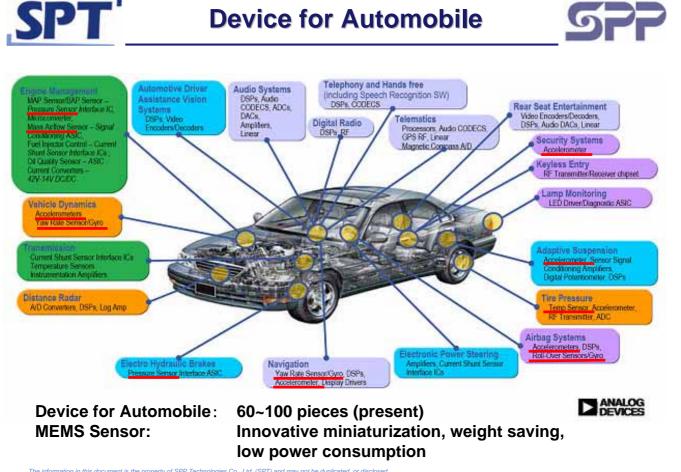



PR-1208

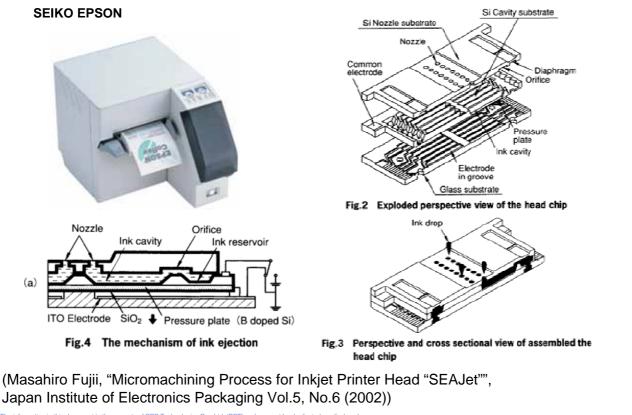
53

- SPTS /STS is Synonymous with the MEMS industry!
- In 1994, STS began working with Robert Bosch to develop a production version of an Etch Process that they had patented.
- In 1995, STS shipped the world 1st DRIE Equipment (*ASE*[®]) with Bosch Process in the market.
- This was an enabling technology in MEMS manufacturing.
- Today >95% of MEMS manufacturers use this technique.
- The development of the technologies and business managed under control of SPP.


The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.


Applications using DRIE

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.


PR-1208 55

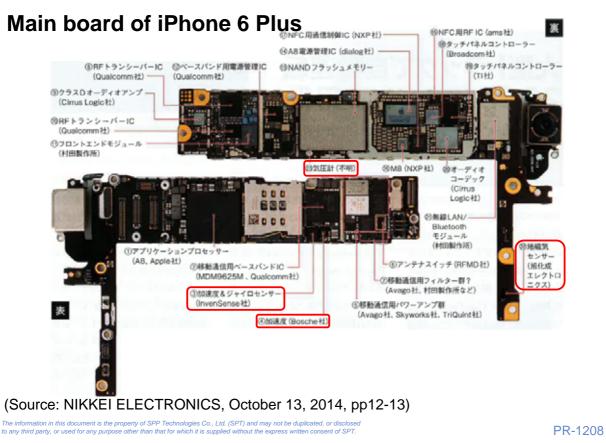
Ink Jet Head

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclose to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

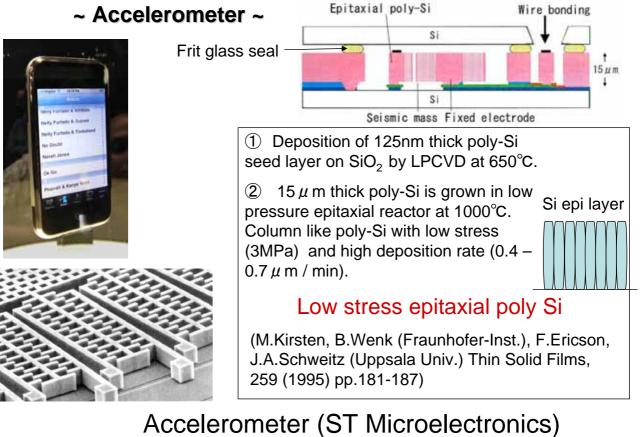
PR-1208 57



Game, Smart Phone



Game console(2006~) (Nintendo - Wii controller)



Smart Phone (2007~) (Apple - iPhone)

SPT Smart Phone (Apple - iPhone 6 Plus)

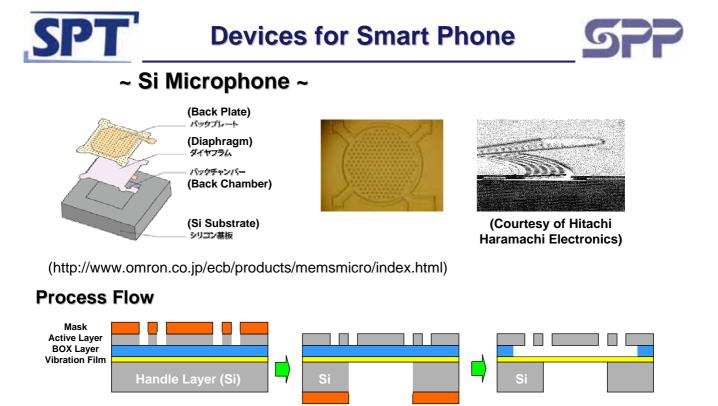
Device for Smart Phone

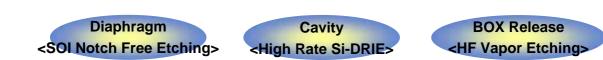
(Courtesy of Prof. Esashi of Tohoku University)

59

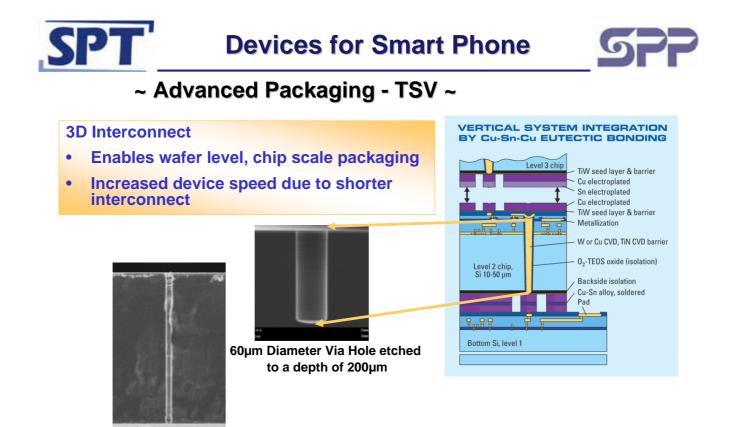
~ MEMS Gyroscope, Motion and Magnetic Sensor ~

Gyroscope

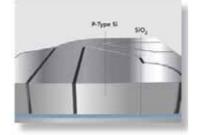


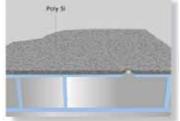

Motion and Magnetic Sensor

(http://www.st.com/internet/com/press_release/p3198.jsp) (http://www.st.com/jp/com/press_release/p3154.jsp)

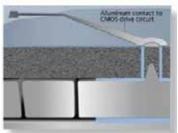

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

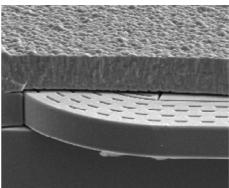
PR-1208 61




400µm Via Hole courtesy of STMicroelectronics

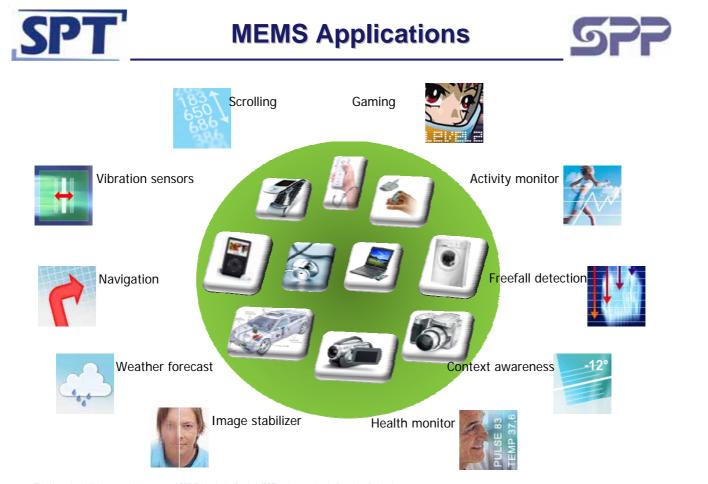
~ SiTime: DRIE and Sacrificial Layer Etching ~

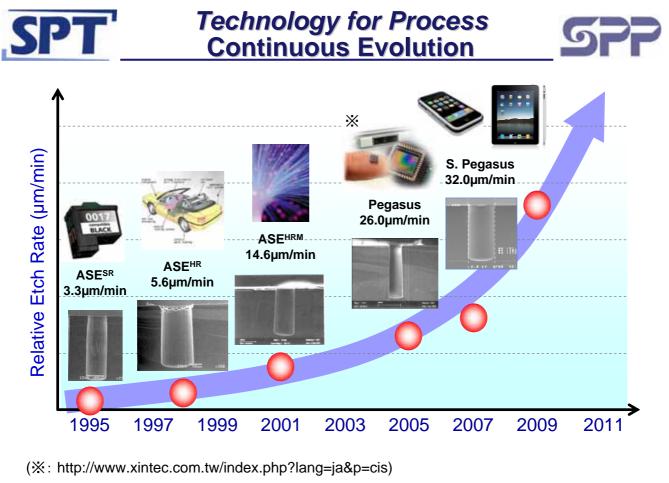



Si-DRIE

Oxide layer fill→ poly-Si Cap

Process combination with Si-DRIE (ASE) and Sacrificial layer etching (Primaxx CET)


Etching & release Thick poly-Si Cap



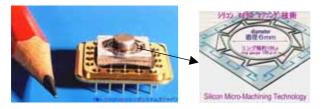
(Courtesy of SiTime)

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 66

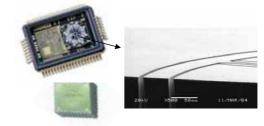
The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 68



• Silicon Sensing Systems Angular Rate Sensor

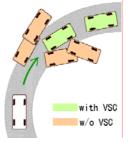
- Si MEMS Bulk Micromachining with DRIE
- Its Unique Si MEMS Ring Structure (D: 6mm, W: 0.1 mm)
- Features
 - Accurate up to 50x than others (automotive condition)
 - Robust for shock & vibration
 - Long life (over 15 years)
 - Operating temperature: -40 ~ +85°C


Applications

- for Automotive
- for Aircraft
- for Robot
- Segway HT etc

Inductive Type

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.



Capacitive Type

PR-1208 70

Application for Automotive

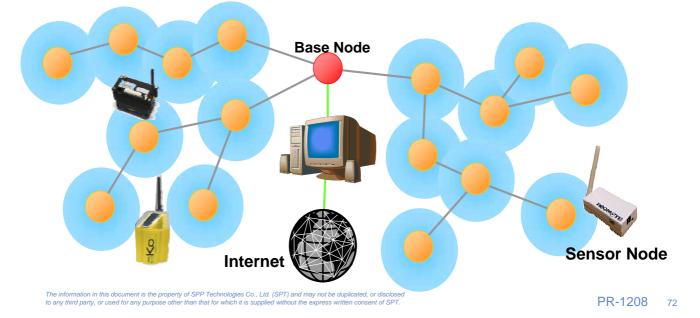
VSC : Vehicle Stability Control

Segway HT

Balanced Sensor Assembly (XYZ+2units)

Application for Aircraft

Flight Navigation Systems

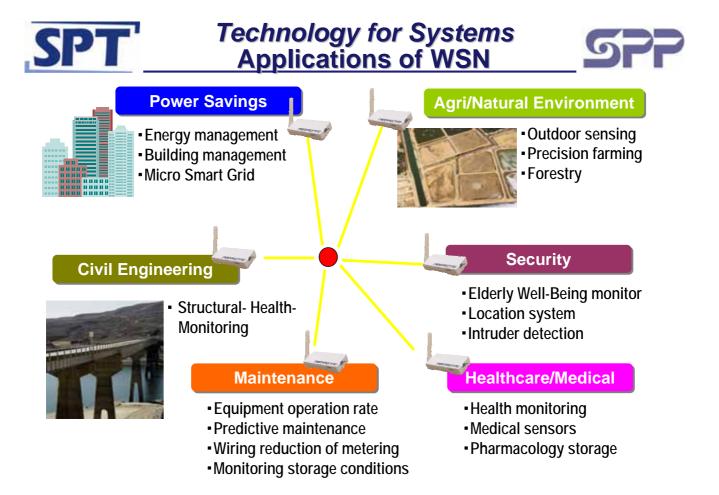


Unmanned Helicopter Control

- Each sensor node forms multi-hop wireless route to the base station; AND self-heals.
- Saves wiring costs on industrial metering or energy-saving system. Because of wireless, a layout change requires no re-wiring costs.
- SPP/Crossbow's NeoMOTE has numerous deployment cases in various situations: proven immunity in communication robustness.

Wireless monitoring the electric power, temp etc --> Control the energy saving (Smart Grid)

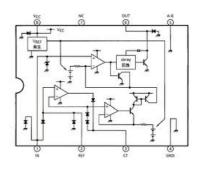
Information by mail alarm



▲ Wireless monitoring the temp and vibration without circuiter Monitoring the state of conservation ▼

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 75

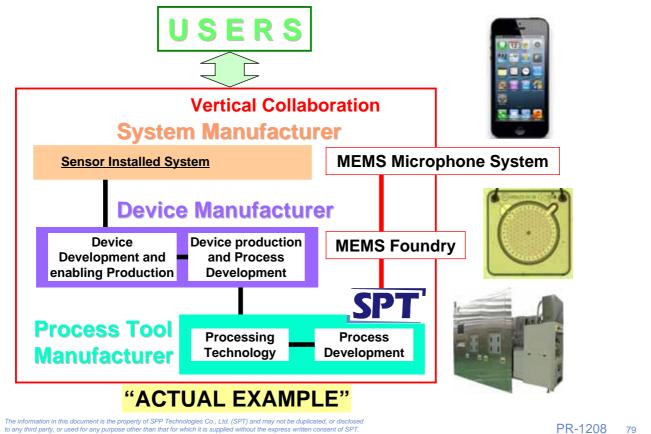

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

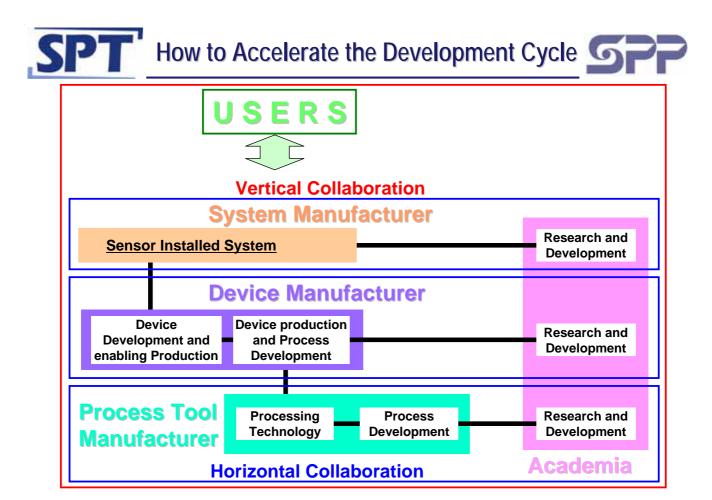
PR-1208 77

Low power MEMS sensors

Sleep operation and quick wake-up, accurate instantaneous measurement; Stable and accurate in supply voltage changes

Energy Havesting


Should be a stable power supply, self-content, even in unfavorable conditions


Integration of various sensors and processing

Various MEMS sensors are integrated with processors and be one single chip, in very near future (e.g. Smartphone sensors)

How to Accelerate the Development Cycle

Summary

- Technologies for Processing, Devices and Systems widely available to support Networked Sensors Development
- Technologies can be developed to support emerging requirements
- MEMS to play the key role to make Trillion Sensors possible
- Networked Sensors to create explosive expansion of application M2M (Machine to Machine), IoT (Internet of Things), and IoE (Internet of Everything)
- Emerging New Applications are essential
- Technologies and requirements in Japan to contribute to solving Global Problems

Trillion Sensors Initiative worldwide ⇒ Japan's active involvement ⇒ New Industry Creation ⇒ Contribution to the World

The information in this document is the property of SPP Technologies Co., Ltd. (SPT) and may not be duplicated, or disclosed to any third party, or used for any purpose other than that for which it is supplied without the express written consent of SPT.

PR-1208 81

